On the computation of discrete fourier transform using fermat number transform
نویسندگان
چکیده
منابع مشابه
On the computation of discrete Fourier transform using Fermat number transform
In the paper the results of a study using Fermat number transforms (FNTs) to compute discrete Fourier transforms (DFTs) are presented. Eight basic FNT modules are suggested and used as the basic sequence lengths to compute long DFTs. The number of multiplications per point is for most cases not more than one, whereas the number of shift-adds is approximately equal to the number of additions in ...
متن کاملVery fast discrete Fourier transform, using number theoretic transform
It is shown that number theoretic transforms (NTT) can be used to compute discrete Fourier transform (DFT) very efficiently. By noting some simple properties of number theory and the DFT, the total number of real multiplications for a length-P DFT is reduced to (P — 1). This requires less than one real multiplication per point. For a proper choice of transform length and NTT, the number of shif...
متن کاملRapid Computation of the Discrete Fourier Transform
Algorithms for the rapid computation of the forward and inverse discrete Fourier transform for points which are nonequispaced or whose number is unrestricted are presented. The computational procedure is based on approximation using a local Taylor series expansion and the fast Fourier transform (FFT). The forward transform for nonequispaced points is computed as the solution of a linear system ...
متن کاملThe Discrete Fourier Transform∗
1 Motivation We want to numerically approximate coefficients in a Fourier series. The first step is to see how the trapezoidal rule applies when numerically computing the integral (2π) −1 2π 0 F (t)dt, where F (t) is a continuous, 2π-periodic function. Applying the trapezoidal rule with the stepsize taken to be h = 2π/n for some integer n ≥ 1 results in (2π) −1 2π 0 F (t)dt ≈ 1 n n−1 j=0 Y j , ...
متن کاملThe Discrete Fourier Transform
Disclaimer: These notes are intended to be an accessible introduction to the subject, with no pretense at completeness. In general, you can find more thorough discussions in Oppenheim's book. Please let me know if you find any typos. In this lecture, we discuss the Discrete Fourier Transform (DFT), which is a fourier representation for finite length signals. The main practical importance of thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEE Proceedings F Communications, Radar and Signal Processing
سال: 1984
ISSN: 0143-7070
DOI: 10.1049/ip-f-1.1984.0003